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A numerical method for solving 3-D convection problems with variable viscosity
in Cartesian geometry is presented. Equations for conservation of mass, momentum,
and energy are solved using a second-order finite-volume discretization in com-
bination with a multigrid method. Viscosity variations of 10 orders of magnitude
are considered. Convergence deteriorates with increasing viscosity variations, but
modifications of the multigrid algorithm are found to improve the robustness of the
numerical method for very large viscosity contrasts. An efficient and flexible local
mesh refinement technique is presented which is applied to various convection prob-
lems with variable viscosity. Comparisons with other numerical methods reveal that
accurate results are obtained even when viscosity varies stronghgoo Academic Press
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1. INTRODUCTION

On geological time scales Earth’s solid mantle can be considered as a highly visce
fluid. The creeping flow is predominantly thermally driven by heat from Earth’s core an
radioactive heat release in the mantle [1]. Mantle viscosity is of the ordérPs, but
it can vary by several orders of magnitude due to the strong temperature and pres:¢
dependence [2]. Geodynamical modeling of convection in Earth’s or in other planete
mantles is simplified because inertia and Coriolis forces can be neglected. On the ot
hand, the extreme variability of viscosity complicates the numerical solution. Despite |
well-known influence on convection patterns variable viscosity has often been ignored
restricted in 3-D convection models because of limited computer resources. Therefore,
development of fast numerical methods which can handle strongly variable viscosity
important for geodynamical modeling.
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A very efficient numerical method for solving elliptic differential equations is multigrid
iteration. The basic idea of multigrid is to approximate and reduce the long-wavelength er
of the solution, which converges very slowly on grids with large numbers of grid point
on coarser grids with successively decreasing numbers of grid points. By doing multig
iterations convergence rates can be obtained which are independent of the problem
A detailed description of the various multigrid schemes can be found, for example,
[3-6].

The multigrid concept has been applied successfully to a wide range of problems,
cluding calculation of fluid flow. Various multigrid methods for solving Stokes and Navier-
Stokes equations with constant viscosity have been presented, for example in [4, 7—
Parmentieret al. [11] have used a multigrid solver in a 3-D convection model for iso-
viscous fluid flow in Cartesian geometry. By using the streamfunction formulation the
have been able to reduce Stokes equations to a pair of Poisson equations which are s
by multigrid iterations. While much work has been spent on multigrid solutions of isc
viscous fluid flow, only few papers deal with variable viscosity. Baumgardner [12] he
presented a multigrid method for solving convection problems in 3-D spherical geol
etry. This method has been used in calculations with constant viscosity [12] as well
with depth-dependent viscosity [13, 14] and with 3-D varying viscosity [15]. Moresi an
Solomatov [16] have presented a multigrid method for convection problems with variat
viscosity in Cartesian geometry which has been used in 2-D and in 3-D calculations [1
18]. Stokes equations are solved by an Uzawa iteration scheme. Iteration for velocity
carried out by a multigrid method, while a conjugate gradient scheme is used for pri
sure iteration. Both multigrid methods are based on a finite-element discretization. Tack
[19] has developed a multigrid method for 3-D convection problems with variable vit
cosity in Cartesian geometry using a finite-volume discretization. This method has be
applied successfully to a variety of convection problems, e.g., [20-22], including calc
lations with extremely variable viscosity [23]. Trompert and Hansen [24] have present
a different multigrid method, though they have used a similar discretization scheme.
modifying the multigrid smoother they have been able to treat viscosity variations up
10°, but convergence of the multigrid method becomes slow if viscosity varies strong|
Auth and Harder [25] have investigated multigrid solutions of convection problems wi
strongly varying viscosity in 2-D. They have increased the stability of the multigrid methc
by using more complex multigrid cycles that require only a slightly larger computation
effort.

I solve 3-D convection problems with variable viscosity in Cartesian geometry, followin
the approaches given by Tackley [19] and Trompert and Hansen [24]. | have improv
these approaches by the implementation of a different multigrid scheme which can har
local grid refinements. In typical convection problems the solution varies rapidly in son
parts of the model domain, e.g., in boundary layers or near stagnation points, while
changes more smoothly in most other regions. This suggests to use a nonuniform nume
grid to achieve good resolution where needed at moderate overall costs. In the conte»
standard finite-difference or finite-volume techniques, uneven mesh spacing leads to n
complex difference equations and is therefore often avoided. The use of a multigrid iterat
scheme allows the implementation of a more efficient technique for creating local me
refinements. Such a technique is described here and is tested both for published benchn
and for particular problems in which large local gradients in all variables play an essen
role.
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2. GOVERNING EQUATIONS

| examine thermally driven convection in a highly viscous, incompressible fluid with infi
nite Prandtl number in a 3-D Cartesian domain. The Boussinesq approximation is adopt
The time-dependent fluid flow is described by the following nondimensional equatiol
derived from the conservation laws of mass, momentum, and energy, respectively,

V.v=0, 1)
~Vp+ V- -n(VVv+(VV)T)) +RaTe, =0, 2
% +V.(vT) = V7T. (3)

v = (u, v, w) means velocityp is the nonhydrostatic pressure compone@rdynamic vis-
cosity, T temperatureg, unit vector antiparallel to the direction of gravity, antime.

Equations (1)—(3) contain only one dimensionless parameter, the Rayleigh number
which is defined by

Ra— PogAT h3’
Ko

with o thermal expansivityg gravitational acceleratiomT temperature drop across the
box, h height of the boxk thermal diffusivity, andoy andng reference values of density
and viscosity, respectively. The equations are scaled Wwiffength), h?/« (time), AT
(temperature), angox / h? (pressure).

Viscosity depends on temperature and depth. The variability of the nondimensional v
cosity is described by Arrhenius law,

E:+E(1-2
=A _ 4
= Ao ST, (@2)
or by a temperature-dependence of the form
n = exp(—E4T), (4b)

with parameter&;—E,4 controlling the temperature and depth dependencefadefining
the reference value of viscosity.

3. NUMERICAL METHOD

3.1. Finite-Volume Discretization

The model domain is divided into uniform celi%; with i, j, k being indices inx-,

y-, andz-direction, respectively. A staggered grid is used. Temperature and pressure
located at the center of the grid cells the velocity components at the center of the cell fa
normal to the direction of the velocity components (Fig. 1).

This staggered grid was first introduced by Harlow and Welch [26] and afterward us
in most of the numerical methods based on the primitive variable formulation, e.g., [7, 1
24, 25, 27]. By this kind of discretization artificial pressure and velocity oscillations ar
avoided [28] and greater accuracy than on nonstaggered grids is obtained [29].
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FIG. 1. Staggered grid location of variables in grid cellx.

Equations (1)—(3) are discretized using a second-order control-volume method. T
model domain is divided into control volumes which must not necessarily correspond
the grid cells. The equations are integrated over these volumes. The discretized equa
are obtained by approximating the required integrals by the grid point values. The most
tractive feature of the control-volume formulation is that the resulting solution satisfies tl
conservation of mass, momentum, and energy exactly over the control volume, indepen
of the number of grid points. A detailed description of the control-volume discretization ¢
the governing equations on a staggered grid can be found, for example, in [6, 28].

The continuity Eq. (1) is integrated over control volumes that match with the grid cell
yielding

Ujjk —Ui—1jk , Vijk — Vij—1k , Wijk — Wijk-1
+ + =0, 5
AX Ay Az ©)

with AX, Ay, andAz grid spacing inx-, y-, andz-direction, respectively.
The control volumes of the momentum Eq. (2) are staggered in the same way as velo
resulting in the following set of discretized equations,

xy xy
_ Pit1jk — Pijk n Ti)ﬁrxljk - Ti)j(li( I Tijk — Tij—1k i Ti)j(lf - Ti)j(lf—l _0 (6a)
AX AX Ay Az ’
xy xy vy yy yz yz
Pij+1k — Pijk Tijk — Ti—1jk , Tj+ik — Tijk , Tijk — Tijk-1
- + + + =0, (6b)
Ay AX Ay AZ
yz yz
_ Bijk+1 — Bijk n Ti)j(lf - Tixlejk i Tijk — Tij-1k 4 Tiﬁﬂ - Tﬁﬁ _ _RaTijk+1+Tijk
Az AX Ay Az 2 ’
(6¢)
with
Uijk — Ui—1jk
XX = 2y IR
ijk Nijk AX

Vijk — Vij—1k

Tk = 2ijk Ay

s
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Wijk — Wijk—1

2z __ -
Tijk = 2nijk Az )

xy_n y [ Uij+1k — Uijk n Vi+1jk — Vijk

Ik Ay AX ’

Xz _ pxz [ Yiike1 = Uijk 4 Witk = Wik
Ijk — Mijk Az AX ’
VZ 2 Vijk+1 — Vijk Wij+1k — Wijk
Tijk = Mijk Az + Ay .

The viscosity;j is defined at the center of the grid cells. Itis calculated from temperatur
and depth using (4a) or (4b). Additional viscosity valnyéé Miics n”k at the midpoints of
cell edges (Fig. 1) are interpolated from the four surrounding cell-centered viscositie
Following the general approach of discretizing equations with discontinuous coefficier
given by Wesseling [6, 30], a method based on continuity of stress at cell faces hasto be u
if viscosity differs strongly between adjacent cells. Continuity of stress can be satisfied
using harmonic interpolation for viscosity at cell edges. This kind of interpolation has be
used by Ogawat al.[27]. However, in the method presented here harmonic interpolatio
does not lead to more accurate results than bilinear interpolation. Therefore, the simj
bilinear interpolation has been used.

The energy Eg. (3) is discretized in time using a finite-difference method with implic
treatment of the advection and diffusion terms,

Tn+l .

A = OVETM v D)™ + - 0)(VIT - VD). (7)

where At is the time step size and the superscrip@ndn + 1 denote values at old and
new time, respectively. While the explicit schent £ 0) is stable only for small time
steps, schemes with > 0.5 are unconditionally stable. The fully implicit backward Euler
scheme® = 1) with large time steps is used for calculating steady-state solutions. For tim
dependent fluid flow the second-order accurate implicit Crank—Nicolson scli2eaé.6)

is used with a time step size limited by the Courant criterion,

At < min M+M+M B
Ay Az

Although the time-stepping scheme is unconditionally stable the Courant condition
been applied to time-dependent solutions in order to achieve good resolution in time.

For the spatial discretization | have integrated (7) over the grid cell volume. Afterward tt
discretized continuity Eq. (5) multiplied by the temperature is subtracted to avoid numeric
instabilities [28], yielding

TITIj—l-’_ OAtJITIj_l IJk (1 O)At‘]uk’ (8)
with
X X y y z 2
\]ijk _ J'+ka Ji—%jk n JIH— 1k 'Jlj—lk " Jljk+z JIJk ’

AX Ay Az
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and
I 1 = = Ui 1jk — w—uijk-ﬁjky
I e = 0T pc— T”HkAyT”k = UijicTijics
‘]|Tk+1 = WTjjs1 — % — Wijk Tijk-

The diffusion termis approximated by central differences while an upwind scheme is us
for the advection term. Two different schemes have been implemented, namely the upwi
biased Fromm scheme used by Trompert and Hansen [24] and the power-law scheme ¢
by Patankar [28]. The advective heat fluxdrdirectionuT at cell boundaryi + % j,K)is
given in the Fromm scheme by

1
(Ui 15k = MaxX(Uijk, 0) (Tijk + Z_(Ti—&-ljk - Ti—ljk))
. 1
+ min(uijk, 0) <Ti+1jk - Z(Ti+2jk - Tijk)>, 9

and in the power-law scheme by

max((1— 0.1- |Pgj|)®, 0) — 1
Tijk
AX
max((1—0.1- |Pejx[)®,0) — 1
AX

Uik = (maX(Uijk, 0 +

+ (min(ui,—k, 0 — )Ti+1jks (10)
and similarly at other cell boundaries.;fRe= u;jx Ax is the local grid Peclet number. For
large Peclet number$Pe;x | > 10) the power-law scheme reduces to the first-order upwinc
scheme with neglected diffusion term. For small Peclet numbers it comes closer to
central scheme [28].

In the following the discretized equations (5), (6a)—(6c), and (8) are formally written ¢
matrix equation

Am(M) G B v f
D 0 O pl=1"f]. (11)
0 0 cw/ \T fe

Nonlinearities occur in the advection term of the energy equation and in the viscous fo
term of the momentum equation due to the temperature-dependence of viscosity.

3.2. Multigrid Method

The discretized Egs. (11) are solved using a multigrid method. In contrast to most of 1
previous multigrid methods | use the full-approximation-storage (FAS) algorithm [3, 4] i
which the full solution is calculated at all grid levels. Fine and coarser grids differ only i
the way of calculating the right-hand-side of (11). This is different from other multigric
algorithms which calculate residuals and corrections instead of the full solution at coar
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grids. The algorithm starts at the finest grid and visits all coarser grids in the order given
the multigrid cycle. A standard cell-centered coarsening is applied meaning that one cos
grid cell includes eight fine grid cells. Although the implemented algorithm is suitable fc
nonlinear differential equations, | have linearized (11). The matregT)) and C(v)

in (11) are computed on all grids in advance using the valuds afdv obtained in the
previous multigrid cycle. At the end of each multigrid cycle they are recomputed.

Two different strategies for solving (11) have been implemented. The first one solves
equations in a coupled manner yielding second-order accuracy both in space and time. Ir
second one the energy equation is decoupled from the continuity and momentum equat
by using the velocity at old time in the advection term. The temperature at new time
calculated first. Afterward new velocity and pressure are computed from the temperatt
This strategy reduces the accuracy to first order in time, but it is computationally cheay
than the coupled solution and more robust when large time steps are used. Therefor
is prefered for calculating steady-state solutions, whereas the coupled solution strateg
used for time-dependent calculations.

3.2.1. Smoother.Because of the occurrence of a zero block on the main diagonalin (11
basic iterative methods like Jacobi or Gauss—Seidel which make use of the inverse of then
diagonal, cannot be applied as smoother. Smoothing methods of the distributive iterat
type are necessary. | have implemented the SIMPLER (semi implicit method for pressu
linked equations revised) algorithm by Patankar [28], because with slight modifications
suitability for calculations with strongly variable viscosity has been shown [24, 31].

The SIMPLER method can be split in following parts:

1. Calculation of new temperature using energy equation.
2. Calculation of new pressure using

—-DSGp= f4— D(v+ SI(f — BT — Av)), (12)

with Sdiagonal of matrixA. This pressure equation is obtained by combining momentun
and continuity equations.

3. Calculation of new velocity using momentum equation.

4. Calculation of a pressure correcti®m using

—-DS'Gsp = f,— Dv. (13)

5. Correction of velocity by adding S~*Gép to fulfill continuity equation.

Inthe case of adecoupled solution strategy step 1 is left out and new temperature is calcul
in separate multigrid cycles.

The calculations in steps 1—-4 are carried out by single pointwise GauR—Seidel iteratic
If the Fromm scheme is used for the advective heat flux, m@tisnot diagonally dominant
and basic iterative methods are not applicable. The defect-correction iteration [32] has b
applied. Instead of solvinG T = fs the defect-correction equation

CT=f—-(C-0C)T, (14)

with € containing the first-order upwind scheme for advection is solved. The right-har
side is recomputed after each multigrid cycle. Becaliggdiagonally dominant pointwise
Gaul3—Seidel iteration is applicable to (14).
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3.2.2. Prolongation and restriction.In multigrid methods data have to be transfered
from fine to coarse grids (restriction) and from coarse to fine grids (prolongation). In ord
to obtain a mesh size independent rate of convergence the prolongation and restric
operators have to satisfy

mMp + Mg > 2m, (15)

wheremp andmg, are defined as the orders of interpolation plus one used for prolongatit
and restriction and @ is the order of the partial differential equation to be solved [5,
6, 33].

| use linear interpolation for prolongation. Temperature and pressure of the fine grid
expressed by Taylor series expansions around the coarse grid points up to first-order te

eg.,

Toizjok = -Fijk + T+ Ty + Ty,
Toi_12j2k = -Fijk -+ Ty+ T,
Toioj_1x = -Fijk + T —Ty+ T,

Toi_10j-1k1 = 'Fijk T =Ty — Ty,

with
T, = Tit1ik ; fi—ljk’
Tij ik — Tij -1k
T, = ik
T, = Tijk+1 — Tijk—l’
8

and similarly for pressure. Overbars denote coarse grid values. Because velocity is
fined at the center of cell faces modified prolongation operators have to be used.

velocity components of the fine grid that belong to coarse grid cell faces Taylor s
ries expansions in the directions perpendicular to the velocity components are appli

e.g.,
U2i2jok = Uijk + Uy + Ug,
Uzi2j—12k = Jijk — Uy + Uz,
Ugi2jok—1 = Uijk + Uy — Uy,
Ugizj—12k-1 = LTijk — Uy — Uz,
with
Uij +1k — Ujj—1k
8 bl
Uijk+1 — Uijk—1
z = ?

Uy=
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Afterward the velocity components at intermediate fine grid cell faces are interpolat
from the fine grid values belonging to coarse grid cell faces, e.g.,

Uzizj2k + Uzi—22j2k

Uoi —12j2k

> ,
Ugi2j—12 + U2i—22j—12%

Ugi—12j—12% = 5 ,
U2i2j2k—1 + U2i —22j2k—1

Ugi—12j2k-1 = > ;

Uzizj—1x—1 + Uzi—22j—12k-1

Ugi—12j—12k—1 2

The prolongation operators for the other velocity components are obtained in a similar w
For restriction the coarse grid values of temperature and pressure are computed by &
aging the fine grid values of the eight corresponding fine grid cells, e.g.,
= Tagjak + Tai—1zjok + Taigj—1ax + - - - + Tai—1zj 121

Tijk = 8 ,

and similarly for pressure. For velocity the fine grid values are weighted in the directic
of the velocity component by using the inverse of linear interpolation and are averaged
perpendicular directions, e.g.,

_ Ozi—1jk + 2020 + Uziy1jk

Uijk = 7 ,

with

o Uzizj2k + Uzi2j—12k + U2i2jok—1 + U2izj—1k—1
Uijk = 2 )

and similarly for other velocity components.

In problems with discontinuous coefficients standard transfer operators are suffici
for cell-centered discretization, but for vertex-centered discretization operator-depend
prolongation and restriction operators have to be used [6, 30, 34]. In the staggered ¢
formulation a vertex-centered discretization is applied for velocity components in the ¢
rection of the velocity components. Following the approach given by Alcaatftd. [35]
| have used prolongation and restriction operators, which fulfill the continuity of stress
intermediate cell faces. No significant differences have been found between standard
operator-dependent transfer operators. Therefore, the prolongation and restriction oper:
described above have been finally implemented.

The residuals of (11) also have to be transfered to coarser grids. The same restric
operators have been used for variables and residuals. With these operators for prolongz
and restriction | obtaimmp =2 andmg =1 and satisfy condition (15) for second-order
differential equations.

3.2.3. Coarse grid approximation.n multigrid methods the fine grid Eqg. (11) has
to be approximated by coarse grid equations. There are basically two different ways
calculating the coarse grid matrices. In the discretization coarse grid approximation [6] 1
coarse grid matrices are obtained in the same way as the fine grid matrix by discretizing
differential equation. Therefore, the coarse grid approximation is straightforward, but it c
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be insufficient on very coarse grids if the differential equation contains strongly variak
coefficients. In the Galerkin coarse grid approximation [6] the coarse grid migitrig
calculated from the fine grid matrid by

M = RMP,

with R and P restriction and prolongation operators. The stencil of the coarse grid matr
depends on the choice of restriction and prolongation operators. In order to avoid that rr
of the computational work which is saved by doing calculations on coarser grids with le
grid points is consumed by more complicated coarse grid matrices, it is essential to
restriction and prolongation operators that increase the stencil of the coarse grid matr
as little as possible. Such transfer operators for the 2-D Navier—Stokes equations h
been presented by Zeng and Wesseling [10]. The Galerkin coarse grid approximatio
often used for differential equations with discontinuous coefficients, for example in [10, 3
34-37].

Because of simplicity | have implemented the discretization coarse grid approximatic
In order to calculate the coarse grid matrices the viscosity has to be known on coarser g
| use restriction of viscosity from finer grids. The viscosity at the center of the coarse g
cell is computed by averaging the cell-centered viscosities of the eight corresponding 1
grid cells,

—_ i2j2k + M2i—12j2k + N2i2j—12k + -+ + + + N2i-12j —12k—
ik = N2i2j2k T 12i—12j2k Uzmsl% N2i—12j—-12 1. (162)

Other viscosities are transferred to coarser grids by using the inverse of bilinear interpolat
yielding

~Xy ~xy ~Xy
5o 1ok 25 1k + Mo 12j 1k

—xy
Nijk 16
~Xy Xy Xy
n 205122k + Hgi2j ok + 21 12) 2%
16
~Xy Xy ~Xy
Mo—12j+12 T 2M2i2) 112 + 2 412) 412
+ : (16b)
16
—~z Mo 12j2k—1 + 2M52j2k—1 + Mai12j2k-1
r’ijk - 16
N 205" 12jk T Hizizjox + 205 12) 2
16
~XZ ~XZ ~XZ
n N3 12jok+1 T 20225241 T 2412 2L (16¢)
16
~yZ ~yZ ~yZ
—yz _ Taij_1k1F 2Maivjok—1 T Naizj 1121
Mk = 16
~yz ~yz ~yz
n 2M3i2j 1k + H2i2j2k + 2M2i2) 112
16
~yZ ~yz ~yZ
n Mi2j—12+1 T 2M2i2j2k+1 T N2z +1241 (16d)

16 ’
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Xy Xy
“xy _ Maizjok t Maizjok-1
Nai2jox = 2 )
Xz Xz
wxz _ Maizjk T Maizj -1
Naizjok = 2 >
yz yz
~yz _ Maizjak T 2122k
N2iz2jox = 2 .

3.3. Local Mesh Refinements

Multigrid methods offer a very efficient and flexible technique for creating local mes
refinements. The nonuniform grid is generated by the same set of uniform subgrids wh
are used in the multigrid method. Local mesh refinements are introduced by some of
finest grids covering only parts of the model domain. A 2-D example is shown in Fig. :
Because the iteration process of the multigrid method takes places on uniform grids
discretization scheme does not have to be changed if grid refinements are introduced.
difference equations which have to be solved remain as simple as in the case without (

Non-uniform grid

Uniform subgrids

Grid

|

refinement

levels

|

gl

global

levels

Y

FIG. 2. Generation of a nonuniform grid by a set of uniform subgrids (2-D example). On refinement leve
grids cover only parts of the model domain. Thick lines represent interior grid boundaries that are not bounda

of the model domain.
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O LJ] O H] O

0,0,8:Tp
0O0.0,m:u
AN AW

0,0, A: coarse grid values

®. 1, A: fine grid values

0,0, A: interpolated values

FIG. 3. Location of variables on a nonuniform staggered grid (2-D example). At interior boundaries of tt
grid refinement variables are interpolated from the coarse grid.

refinements. The only modification occurs in the calculation of the right-hand side. It h
to be taken into account that a coarse-grid correction is calculated in regions where fi
grids exist, while in other parts of the model domain the grid acts as the finest grid. It
compatible with the FAS-algorithm to have different finest grids in different regions becau
the full solution is treated at all grid levels, whereas there is a conflict in other multigr
algorithms in having correction of the fine grid solution in some regions and full solution i
others. A detailed description of this mesh refinement method can be found, for example
[3, 38].

On refinement levels (levels on which grids do not extend over the whole model d
main) grids contain interior boundaries that are not boundaries of the model domain (th
lines in Fig. 2). Therefore, no boundary conditions can be applied. In order to define 1
difference equations at these boundaries values for temperature, pressure, and velocit
interpolated from the next coarser grid. Figure 3 shows the staggered grid locations of
interpolated values. The accuracy of the numerical solution depends on the order of
interpolation. The error introduced by the interpolation should be not larger than the lo
truncation error which is of orden+ p with m order of the differential equation arl
approximation order [38]. In this case with= p =2 the interpolation should be at least
of fourth order. Therefore, cubic interpolation for calculating values at interior boundari
have been implemented.

By using this refinement method the number of grid points does not necessarily decre
on coarser grids. Multigrid cycles that use coarser grids more than once during each cy
e.g., F or W cycles, do not provide a linear dependence of computational work on num
of grid points. A modified algorithm based on a work-to-accuracy exchange rate has bt
developed by Bai and Brandt [38], which obtains the usual multigrid efficiency. | hav
implemented a simpler approach using modified multigrid cycles. On global grid leve
all usual multigrid cycles are allowed, but on refinement levels they are always chanc
to V cycles. V cycles visit coarser grids only once during each cycle. This modificatic
minimizes the increase of computational work due to local mesh refinements.
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4. RESULTS

4.1. Convergence Tests

In previous investigations convergence problems of the multigrid method have been
ported if viscosity varies strongly [19, 24, 25]. In this section different variants of th
multigrid method have been tested. Their convergence behavior in calculations with la
viscosity variations has been determined, in order to find the best implementation for gt
dynamical convection problems.

Convergence tests have been done by solving Stokes equations only for a prescr
temperature field. Temperature has been taken from a 3-D time-dependent calculatio
a box with 64x 64 x 64 equally spaced grid cells. Temperature is fixed to zero at the to
and to one at the bottom. Reflecting symmetry is assumed at the sidewall, zero shear s
at all boundaries. Viscosity depends on temperature according to (4bEwithin(10°).
The Rayleigh number is Ra1000 based on viscosit T = 0). The calculation has been
started from a conductive temperature distribution to which small-scale perturbations h:
been added.

Three different temperature fields have been used in the convergence tests. Temperat
(Fig. 4, top) is taken from an early stage of the time evolution, with diapiric thermal plume
rising from an unstable bottom boundary layer. Temperature 2 (Fig. 4, middle) belongs t
transient stage during time evolution when the flow structure is reorganized. Temperatul
(Fig. 4, bottom) shows two major upwellings beneath a top boundary layer which cove
most of the temperature drop across the box. These temperature fields have been ch
because they provide a different distribution of local viscosity gradients. In temperature
viscosity varies strongly in the bottom boundary layer and in the rising plume heads. Becal
of the complicated structure of temperature 2, local viscosity gradients occur throughe
the box, but they are not as large as in temperature 1. In temperature 3 the interior of the
is nearly isoviscous and most of the global viscosity contrast is covered by the top bound
layer.

Although temperature has been prescribed in the convergence tests the viscosity con
has been varied by changing the temperature-dependence of viscosity. The converg
behavior of different multigrid variants is shown in Fig. 5. The number of multigrid cycle:
which are required for reducing the initi&l>-norm of the residual by eight orders of
magnitude is presented as a function of the global viscosity contrast. V, F, and W cyc
have been used with two pre- and postsmoothers. In addition, modifications of the V &
W cycles have been tested. In the modified W cycle the number of pre- and postsmoott
have been increased by a factor of 2 from one grid to the next coarser grid. In the modif
V cycle they have been successively increased by a factor of 4, leading to the same t
number of smoothing iterations on coarser grids in the modified V and W cycles. F, \
and the modified V and W cycles are approximately 15, 20, and 50% more expensi
respectively, than V cycles.

The convergence rates deteriorate with the increasing variability of viscosity for ¢
multigrid variants. Above a certain viscosity contrast the numerical method diverges. T
multigrid method becomes more stable if more complex multigrid cycles instead of tl
most simple V cycle are used, in agreement with results obtained in 2-D [25]. Comparis
of modified V and W cycles reveal that this improvement is not caused by the order in whi
the coarser grids are visited but by the total number of smoothing iterations on coarser gr
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FIG. 4. Temperature fields of a 3-D time dependent calculation with variable viscosity 810004 (top,
isosurfacel =0.85),t ~ 0.032 (middle, isosurfac& = 0.88), andt ~ 0.060 (bottom, isosurfac€ = 0.90).

If the number of iterations at each level is equalized the robustness of V and W cycle:
similar.

Convergence rates of the modified V and W cycles are acceptable for global viscos
variations up to 1®for temperature 1 (Fig. 5, top) which is equivalent to local viscosity
contrasts of 24,000 over one grid cell in the bottom boundary layer. For temperatures 2.
3 global viscosity variations of 0and 18, respectively, have been reached (Fig. 5, middle
and bottom, respectively). However, these larger global viscosity variations belong to lo
viscosity contrasts of 1700 and 700 over one grid cell which are much smaller than 1
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FIG. 5. Multigrid convergence for temperature fields given in Fig. 4: temperature 1 (top), temperature
(middle), and temperature 3 (bottom). V cycles (dashed), F cycles (long dashed), W cycles (dot-dashed), mod
V cycles (dotted), and modified W cycles (solid) are used. The curves end when divergence of the multigrid met
occurs.

local viscosity contrast that has been obtained for temperature 1. This indicates that nei
the global viscosity variations nor the local viscosity contrasts by themselves control t
convergence behavior of the multigrid method. It seems that the volumetrical distributi
of viscosity variations is just as important.

The robustness of the multigrid method is extremely sensitive to the kind of viscosi
calculation on coarser grids if viscosity varies strongly. | have used different methods, |
cluding direct calculation from the functional dependence on temperature and depth :
restriction from finer grids. It turned out that calculation of viscosity directly from temper
ature and depth on coarser grids is not suitable, consistent with 2-D results [25]. Varic
restriction operators, including the viscosity restriction presented by Trompert and Hans
[24], yield good convergence rates for some temperature distributions but not for othe
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The viscosity restriction (16a)—(16d) that was finally implemented has produced on aver:
the best results for all temperature distributions.

The convergence tests show that acceptable convergence rates of the multigrid metho
obtained for global viscosity variations up to at least eight orders of magnitude. Calculatic
with even larger viscosity variations have been done by increasing the number of p
and postsmoothers in the multigrid algorithm. An alternative way for making multigri
methods more stable has been presented by Trompert and Hansen [24]. They have foun
convergence problems can be reduced by solving the pressure (12) and pressure-corre
(13) equations of the SIMPLER iteration more accurately. However, both modificatiol
make the numerical method significantly more expensive.

4.2. Benchmark Calculations

In this section the verification of the code is described. Because no analytic solutior
available for the general variable viscosity case, the correctness of the numerical solu
has been verified by comparing benchmark results that have been published for both
and 3-D convection problems with infinite Prandtl number [39, 40]. Global averaged valu
like the Nusselt number at the top boundary,

1 [aT
N = —— —_— :1
u Ile/az(x, y,z=1)dxdy,

the root-mean-square velocity,

1 1/2
Urms = (II /(u2 + 02+ w?)dx dydz) ,
xly .
and horizontal averaged temperatures,

1
(T=+—— [ T(X,y,27dxdy,
ly

with I, andly scaled lengths of the box ix- and y-directions have been calculated. In
addition, local values like temperature gradients,

oT

0z’

and temperature and velocity at specified points have been compared, which indicate n
clearly whether local features are accurately resolved.

Benchmark calculations with variable viscosity in 2-D (problems 1 and 2) and in 3-
(problem 3) have been done. Problem 1 corresponds to case 2a in [39]. Stationary ¢
vection with temperature-dependent viscosity in a square box is studied. Variable visco:
according to (4b) wittE, = In(10%) is used. Temperature is fixed to zero at the top and tc
one at the bottom. Reflecting symmetry is assumed at the sidewalls, zero shear stress
boundaries. The Rayleigh humber is R40,000 based on viscosity(T =0). A single
convection cell develops with thin boundary layers at the top and bottom. The temperat
field is shown in Fig. 6. Benchmark results are given in Table 1.

Problem 2 is a maodification of this benchmark case with much larger viscosity co
trast. All boundary conditions and model parameters are the same, excef.and
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TABLE |
Benchmark Results for Problem 1

Grid Nu Vrms [of1 (o7} [} Qs
Benchmark — 10.0660 480.4334 17.5314 1.0085 26.8085 0.4974
| 32x 32 10.9823 434.1955 22.5323 0.8369 21.4052 1.3240
48 x 48 10.4675 467.0277 19.4143 0.9321 24.0071 0.7891
64 x 64 10.2907 475.2379 18.5086 0.9664 25.4672 0.6321
96 x 96 10.1683 479.2123 17.9482 0.9902 26.5126 0.5400
Extrapol. 10.0761 480.2397 17.5849 1.0076 27.1441 0.4909
1l 32 x 32 10.6340 446.3899 21.8312 1.0591 20.8398 4,1433
48 x 48 10.2298 468.2643 18.9488 1.0245 23.7434 2.3037
64 x 64 10.1331 473.6656 18.2383 1.0151 25.1229 1.4430
96 x 96 10.0855 477.2843 17.8193 1.0099 26.1127 0.8739
Extrapol. 10.0690 480.6073 17.5297 1.0074 26.7742 0.5835
1 32 x 32 10.9346 437.1142 22.1751 0.8583 21.2425 1.3496
48 x 48 10.5298 467.8947 19.7232 0.9368 24.1876 0.7965
64 x 64 10.3391 475.8778 18.7354 0.9687 25.7341 0.6344
96 x 96 10.1935 479.5787 18.0605 0.9912 26.7861 0.5405
Extrapol. 10.0788 479.9999 17.6252 1.0070 27.3365 0.4928
v 16 x 16 10.2540 465.3548 18.3486 0.9691 25.4857 0.6315
24 x 24 10.1531 474.7340 17.9082 0.9869 26.5948 0.5441
32x 32 10.1187 477.5832 17.7531 0.9949 26.8368 0.5187
48 x 48 10.0915 479.2310 17.6357 1.0015 26.8936 0.5047
Extrapol. 10.0647 480.0172 17.5302 1.0077 26.7858 0.4990

Note Temperature gradientg—q, have been calculated @ét, z) = (0, 1), (1, 1), (1, 0), and (0, 0). I, uniform
grid using bilinear interpolation for viscosity at cell edges and Fromm scheme for advection; I, same as |, exc
using power-law scheme for advection; Ill, same as |, except using harmonic interpolation for viscosity; IV, same
1, except using nonequal distribution of grid cells. Given numbers of grid cells belong to the finest global grid. Tv
refinement levels have been added. The first covers the région): x <0.25v x > 0.75v z< 0.25Vv 2> 0.75}.
The second covers the regiffx, z): x <0.125v x > 0.875v < 0.125Vv z> 0.875}. The total number of grid
cells are 2176, 4896, 8704, and 19584.

0.4

0.2

temperature

0.2

0.4 0.6
X

0.8

10.8

r 10.6

0.4

0.2

FIG. 6. Stationary 2-D convection with variable viscosity (problem 1).



3-D CONVECTION PROBLEMS 143

temperature
—1
10.8
10.6
0.4 \ r 0.4
0.2 ' 0.2
0 - 0

0 0.2 0.4 0.6 0.8 1
X

FIG. 7. Stationary 2-D convection with extremely variable viscosity (problem 2).

E, = In(1(®). Because of the strong temperature-dependence of viscosity a highly viscc
stagnant lid develops at the top boundary. Results can be found in Fig. 7 and Table II.
Problem 3 is equivalent to case 2 in [40]. Stationary square-cell convection in Car
sian geometry is studied with plume-like up- and downwellings. Viscosity depends mod
ately on temperature according to (4a) wikh= exp(—E1/(0.5+ E3)), E; =225/In (An)-
0.25In(An), E; =0, E3=15/In (An)-0.5, and a maximum viscosity contradty = 20.
Temperature is fixed to zero at the top and to one at the bottom. Both boundaries are ri
Reflecting symmetry is assumed at all sidewalls. The Rayleigh numbe&=2R®00 based
on viscosityn (T = 0.5). Two isosurfaces of temperature are shown in Fig. 8. Benchmar
results are given in Table II.
Solutions have been obtained on successively refined grids, allowing extrapolation
results. All extrapolated values are close to the published benchmark results. Becaus

TABLE Il
Benchmark Results for Problem 2
Grid Nu Urms o 02 [0} s
| 32x 32 2.3076 246.2311 2.8278 1.8470 5.5275 0.2576
48 x 48 2.4041 261.6192 2.9859 1.8974 6.9135 0.2403
64 x 64 2.4377 266.3594 3.0388 1.9147 7.5930 0.1986
96 x 96 2.4603 268.7643 3.0737 1.9261 8.0841 0.1727
Extrapol. 2.4759 269.1685 3.0974 1.9336 8.4133 0.1592
1 32 x 32 2.5113 256.3763 3.2438 1.9017 5.9361 0.3932
48 x 48 2.5088 267.4990 3.1986 1.9255 7.1679 0.2506
64 x 64 2.4993 269.9527 3.1632 1.9314 7.7753 0.2030
96 x 96 2.4885 270.4448 3.1303 1.9339 8.1981 0.1743
Extrapol. 2.4759 269.1178 3.0977 1.9337 8.4493 0.1600

Note Temperature gradientg—q, have been calculated ét, z) = (0, 1), (1,1), (1, 0), and (0, 0). I, uniform
grid using bilinear interpolation for viscosity at cell edges and Fromm scheme for advection; lll, same as |, exc
using harmonic interpolation for viscosity.
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FIG.8. Stationary 3-D convection with variable viscosity (problem 3). Two temperature isosurfaee 85
andT = 0.3) are shown.

smaller viscosity variations in problem 3 fewer grid points are needed to get accurate res
than for problems 1 and 2.

Problem 1 has been solved using Fromm scheme (9) and power-law scheme (10) for
vection. Both upwind schemes lead to solutions with similar accuracy. Only the heat flux
the lower left corner is less accurate if the power-law scheme is used (Table I). Bilinear ¢
harmonic interpolation for viscosity at cell edges have been compared in problems 1 an
No significant differences can be observed in problem 1 (Table I). Only if viscosity varie
more strongly harmonic interpolation becomes more accurate than bilinear interpolati
(Table II). The local mesh refinement technique has been verified in problems 1 and 3

TABLE Il
Benchmark Results for Problem 3
Grid Nu Urms (Tos (T)ors T wp
Benchmark — 3.0393 35.13 0.5816 0.5659 0.9053 165.9

| 16 x16x 16 3.0849 35.9987 0.6047 0.5787 0.9199 168.5796
24x 24x 24 3.0648 35.5494 0.5925 0.5722 0.9129 167.6117

32x32x 32 3.0548 35.3692 0.5878 0.5696 0.9098 166.9876

48x 48 x 48 3.0466 35.2341 0.5844 0.5676 0.9074 166.4375

Extrapol. 3.0393 35.1233 0.5818 0.5659 0.9054 165.9184

\Y 12x12x 12 3.0566 35.5856 0.5992 0.5674 0.9157 165.2988
18x18x 18 3.0462 35.3058 0.5898 0.5839 0.9105 165.5992

24x 24 % 24 3.0424 35.2185 0.5864 0.5662 0.9084 165.6593

36x 36x 36 3.0397 35.1610 0.5839 0.5660 0.9069 165.7218

Extrapol. 3.0376 35.1197 0.5818 0.5659 0.9058 165.8242

Note Temperaturdy and vertical velocitywp have been taken frokix, y, z) = (0, 0, 0.5). I, uniform grid using
bilinear interpolation for viscosity at cell edges and Fromm scheme for advection; 1V, same as |, except us
nonequal distribution of grid cells. Given numbers of grid cells belong to the finest global grid. One refinement ley
has been added covering the regi@r, y, 2): (x <1/3Ay<1/3) v (x>2/3Ay>2/3)vz<1/6vz>5/6}.

The total number of grid cells are 7552, 25488, 60416, and 203904.
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problem 1 a nonuniform grid with a factor of 4 smaller grid spacing near the boundaries
been used. In problem 3 the grid spacing has been decreased by a factor of 2 in the tor
bottom boundary layers and in the up- and downwelling corners (see Tables | and Il fo
detailed description of the grid structures). Using local mesh refinements leads to more a
rate results compared to calculations in which the same total number of grid cells are equ
spaced. The improvement of accuracy by increasing the resolution in the critical region
comparable to the improvement by increasing the resolution everywhere (Tables | and |

4.3. Convection Problems with Large Viscosity Gradients

In geodynamical modeling viscosity gradients which are much larger than in publish
benchmarks are important. Even in problem 2 viscosity varies only moderately in the inter
of the convection cell because most of the viscosity contrast is covered by the stagnant lic
this section the accuracy of various numerical methods for convection problems with lal
local gradients in all variables is examined. The numerical solution of the finite-volun
multigrid method presented here is compared with numerical solutions obtained by a tt
order convergent finite-element method [41] and by a hybrid method using finite differenc
in vertical direction and a spectral formulation in horizontal direction [42].

The test problem is motivated by studies of the interaction of thermal plumes in Eartt
mantle with a spreading oceanic ridge [43—-45]. Thermal plumes have been propose
transport hot material from deep in Earth’s mantle to the base of the lithosphere. At ridc
the plume material may rise up to even shallower depths because the lithosphere is thir
by the diverging plate motion. Studies of plume-ridge interaction are numerically ve
demanding because in the corner-flow region of the ridge the viscosity gradients becc
extremely large. The problem is intrinsically 3-D but because only a 2-D version is availal
for the high-order finite-element code, | restrict the problem to 2-D where the cylindric
plume is replaced by a sheet-like upwelling below the ridge.

Calculations have been done in a box with open bottom and right boundaries. Bound
conditions are defined by

oT
—ZUZUXZ:O atX:O,
X
oT 00y x
—=w=0’ =Iog
aX 0z
atx = Iy,
oraT—O u=u 8w—O
9% =y, — Usheas 9x =
x \? do
T=1+ATeexp| —(— ) |, u=—23=0 atz=0,
Al p< (Axp>> X
X
T=0, u=u0tanh<>, w=20 atz=1,
XR

with oy, oz, andao;; stress components. The shear-flow prafiga(2) is calculated by

d _du =0
(TZ 77& shear| = Y,

With Ugheaf0) =0, Usheaf1) = Ug, and r(z) horizontal averaged viscosity. At=Iy two
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FIG.9. Stationary plume-ridge interaction with large local viscosity gradients (problem 4). Solution has be
obtained by the finite-volume multigrid method using the given nonuniform grid structure with four times mot
grid cells than are shown, yielding grid spacitg = Az=1/64 in the corner-flow region of the ridge and in the
hot upwelling andAx = Az=1/16 far away from the ridge. Only the left half of the model domain is shown.

different boundary conditions have been applied. The first one has been used in the fir
volume multigrid method and in the finite-element method and the second one in the spec
method. Model parameters are 40,000 based on viscosity(T =1,z=0), ATp=
0.15, Axp=0.06, up=200, xg=0.05, and I, =4, exceptly=2 in the spectral
method.

Problem 4 is defined by a temperature- and depth-dependent viscosity according to |
with A= exp(—(E1+ Ez)/(1+ Eg)), E; =18504, E; =4.884, andE3; =0.21. Viscosity
is limited to a maximum value of 100, yielding lateral viscosity variations of four orders o
magnitude within a small region near the ridge. Problem 5 is a modification of problem
with even larger viscosity gradients. Allmodel parameters are the same, &ce@t6.261,
yielding lateral viscosity variations of five orders of magnitude.

The stationary solution of problem 4 is shown in Fig. 9. Velocity profiles obtained by th
different numerical methods are presented in Fig. 10. The finite-volume multigrid meth
and the finite-element method produce nearly similar results. Convergence tests have
vealed that these solutions are close to the correct result. Both solutions have been obte
on nonuniform grids with smaller grid spacing near the upper left corner. The structure
the nonuniform grid used in the finite-volume multigrid method is shown in Fig. 9. Mes
refinements with a factor of 4 smaller grid spacing have been introduced in the corn
flow region of the ridge and in the hot upwelling. In the finite-element method the gri
spacing is nonequal in horizontal and vertical directions. Both grids contain approximate
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FIG. 10. Vertical velocity atx = 0 (top) and horizontal velocity at= 0.25 (bottom) for problem 4 calculated
by the finite-element method using 338 nonequally spaced grid points (dashed), by the spectral method usin
96 x 48 equally spaced grid points (dot-dashed) and by the finite-volume multigrid method using 2368 nonequ:
spaced grid cells on the grid shown in Fig. 9 (solid).
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FIG.11. Vertical velocity atx = 0 (top) and horizontal velocity at=0.25 (bottom) for problem 5 calculated
by the finite-volume multigrid method using 25664 grid cells (dashed) and 9624 grid cells (dot-dashed) on
uniform grids and 2368 nonequally spaced grid cells on the grid shown in Fig. 9 (solid).
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the same total number of grid points. Because of the higher convergence order the fin
element method is slightly more accurate than the finite-volume multigrid method. On t
other hand, the finite-volume multigrid method is approximately three times faster than t
finite-element method for this test problem (3.5 s compared to 9.2 s for 10 time steps on
IBM RS/6000 58H workstation).

The solution of the spectral method differs strongly. A modified boundary conditio
at the open right boundary has been used in order to apply the fast Fourier transforr
tion. | have varied the aspect ratio of the box and the boundary condition at the ric
boundary in the finite-volume multigrid method. It turned out that the solution in the
corner-flow region of the ridge is not influenced by the boundary condition. Therefor
the differences between the solution of the spectral method and the other solutions ca
be explained by different boundary conditions. It seems that the spectral method ovel
timates the viscosity in regions with large lateral viscosity variations. Increasing the gt
resolution does not lead to a significant improvement of the solution. Accurate results ¢
be obtained by the spectral method only if lateral viscosity variations are significant
reduced.

The accuracy of the finite-volume multigrid method has also been determined for prc
lem 5. Results on locally refined grids and on uniform grids are shown in Fig. 11. Lar
numbers of grid cells have to be used on uniform grids in order to achieve good resolutit
Results on locally refined grids with fewer numbers of grid cells are nearly as accura
If the same number of grid cells are used on uniform and on nonuniform grids results
nonuniform grids are significantly more accurate.

5. CONCLUSIONS

A finite-volume multigrid method for solving convection problems with variable vis-
cosity in 2-D and 3-D has been presented. The stability of the multigrid method for lar
viscosity variations has been improved by using more complex multigrid cycles inste
of the most simple V cycle. The multigrid method becomes more stable if the number
smoothing iterations on coarser grids is increased. Global viscosity variation$’dfab@
been considered.

Alocal mesh refinementtechnique has been presented which is more efficient and flex
than previously used refinement methods. The nonuniform grid consists of uniform subgri
This method has been tested for various convection problems. Local mesh refinements
improve the accuracy to a comparable amount as a global refinement of the grid. 1
formulation of the algorithm allows a simple implementation of complex grid structures.
enables one to introduce new mesh refinements or remove existing ones during calculal
Therefore, it offers a simple possibility of adaptive grid refinements.

The accuracies of different numerical methods have been compared for a test prob
with large local viscosity gradients. Numerical methods based on a spectral approach
often used for solving 3-D convection problems. However, it has turned out that spect
methods lead to inaccurate results if the viscosity varies strongly. Therefore, they are
suitable for geodynamical modeling with large viscosity variations. On the other han
the accuracy of the finite-volume multigrid method is comparable to the accuracy of
third-order convergent finite-element method. The suitability of the finite-volume multi
grid method for solving convection problems with strongly variable viscosity has bee
shown.
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